> [!Sources]-
> >- https://maxwells-equations.com
> - [Intuitive Guide to Maxwell's Equations](https://github.com/photonlines/Intuitive-Guide-to-Maxwells-Equations)
> - [[Divergence]] and [[Curl]] - 3blue1brown video](https://www.youtube.com/watch?v=rB83DpBJQsE)
> - https://www.fiberoptics4sale.com/blogs/electromagnetic-optics/a-plain-explanation-of-maxwells-equations
## 1. Gauss's Law for Electric Fields
$\vec ∇ •\vec E =\frac{\rho}{\epsilon_0} $
- $\rho$ = charge density
- $\epsilon_0$ = electrical permittivity of free space
- $\vec ∇ •\vec E $ = [[divergence]] of the electric field
### [[Integral]] form
![[Maxwell 1.png]]
## 2. Gauss's Law for [[Magnetic Fields]]
$\vec ∇• \vec B = 0 $
- $\vec ∇ •\vec B $ = [[divergence]] of the magnetic field
The [[divergence]] of a magnetic field is always zero - there are no magnetic unipoles
- Magnetic field lines always form continuous loops
### [[Integral]] form
![[Maxwell 2.png]]
## 3. Faraday's Law
**A changing magnetic field induces a circulating magnetic field in the direction which opposes the magnetic flux**
$\vec ∇ \times \vec E = - \frac {\partial\vec B}{\partial t} $
- $\vec ∇ \times \vec E $ = [[curl]] of the electric field
- $ \frac {\partial\vec B}{\partial t}$ = The rate of change of the magnetic field with respect to time
![[Maxwell 3 - Faraday .png|150]]
![[Maxwell 3 - Faraday 2.png|400]]
### Integral form
![[Maxwell 3.png|400]]
![[Maxwell 3 - 2.png|300]] = ![[Maxwell 3-3.png|400]]
## 4. Ampere-Maxwell Law
A changing electric field, and/or an electric current, induce a magnetic field
$∇ \times \vec B = \mu_0 (J + \epsilon_0 \frac
{\partial \vec E}{\partial t}) $
- $∇ \times \vec B $ = [[curl]] of the magnetic field
- $\mu_0$ = magnetic permeability of free space
- $J$ = electric current density
- The amount of charge moving through a surface over time
- ![[Maxwell 4 - charge carrying wire.png|350]]
- $\epsilon_0$ = electric permittivity of free space
- $\frac{\partial \vec E}{\partial t}$ = rate of change of the electric field with respect to time
![[Maxwell 4.png|grid]] ![[Maxwell 4 - right hand rule.png|grid]]
![[Maxwell 4 - wire.png|400]]
### [[Integral]] Form
![[Maxwell 4 - integral.png|500]]
![[Maxwell 4 - path integral.png|200]] = ![[Maxwell 4 - current.png|200]] + ![[Maxwell 4 - surface integral.png|300]]