<table>
<tr>
<td>Compound
</td>
<td>Synthesis Methods
</td>
</tr>
<tr>
<td>Alkanes
</td>
<td>Alkene reduction
<p>
- alkene + H<sub>2</sub>/Pd → alkane (syn addition)
</td>
</tr>
<tr>
<td>Alkenes
</td>
<td>E1
<p>
- tertiary or secondary halide/alcohol + polar protic solvent, gives more substituted double bond
<p>
E1CB
<p>
- bad leaving group and acidic proton, gives less substituted double bond
<p>
E2
<p>
- strong base, usually gives more substituted bond unless steric issues or E1CB character
<p>
Alkyne redution
<p>
- alkyne + Lindlar catalyst → alkene (syn addition)
</td>
</tr>
<tr>
<td>C-C bonds
</td>
<td>SN2 with CN<sup>-</sup> or Grignard reagent
<p>
Epoxide opening with Grignard reagent
</td>
</tr>
<tr>
<td>Ethers
</td>
<td>Williamson ether synthesis
<p>
- alcohol and alkyl halide join
</td>
</tr>
<tr>
<td>Alcohols
</td>
<td>Direct hydration
<p>
- alkene + water → carbocation → alcohol (Markovnikov addition)
<p>
Hydroboration
<p>
- alkene + BH<sub>3</sub>/KOOH → alcohol (anti-Markovnikov syn addition)
<p>
Oxymercuration
<p>
- alkene + Hg(OAc)<sub>2</sub> → alcohol (Markovnikov addition w/o rearragement)
<p>
Epoxide opening
<p>
- epoxide + HNu/HNu<sub>2<sup>+</sup></sub> → opens to alcohol w nucleophile on more substituted carbon
<p>
- epoxide + HNu/Nu<sup>-</sup> → opens to alcohol w nucleophile on less substituted carbon
</td>
</tr>
<tr>
<td>Alkyl halides
</td>
<td>Hydrohalogenation
<p>
- alkene + HX → carbocation → alkyl halide (Markovnikov addition)
<p>
Radical substitution
<p>
R-H + X<sub>2</sub> + hv → R-Br + HBr
</td>
</tr>
<tr>
<td>Alkyl bromides
</td>
<td>Hydrohalogenation
<p>
Radical substitution with Br<sub>2</sub>
<p>
Allylic halides
<p>
- alkene + NBS → bromination leaving double bond intact
<p>
Hydrobromination
<p>
- alkene + HBr → alkyl bromide (Markovnikov addition)
<p>
Radical hydrobromination
<p>
- alkene + HBr + peroxides or AIBN → alkyl bromide (Anti-Markovnikov addition)
</td>
</tr>
<tr>
<td>Epoxides
</td>
<td>Using bromohydrins
<p>
alkene + Br<sub>2</sub> + H<sub>2</sub>O → bromohydrin + NaH → epoxide
<p>
Using peracids
<p>
alkene + peracid → epoxide (concerted reaction)
</td>
</tr>
<tr>
<td>Diols
</td>
<td>Alkene oxidation
<p>
- alkene + KMnO<sub>4</sub>→ vicinal diol (syn addition)
<p>
Epoxide opening
<p>
- water in acidic or basic conditions (anti addition)
</td>
</tr>
<tr>
<td>Ketones
</td>
<td>Ozonation
<p>
- non-terminal alkene + O<sub>3</sub> + reducing agent (Me<sub>2</sub>S) → ketone
<p>
Alkyne hydration
<p>
alkyne → BH<sub>3</sub>/KOOH or Hg(OAc)<sub>2 </sub>→ enol + H<sub>2</sub>O/H<sub>3</sub>O<sup>+</sup> → ketone
</td>
</tr>
<tr>
<td>Aldehydes
</td>
<td>Ozonation
<p>
- terminal alkene + O<sub>3</sub> + reducing agent (Me<sub>2</sub>S) → aldehyde
<p>
Alkyne hydration
<p>
Terminal alkyne → BH<sub>3</sub>/KOOH → enol + H<sub>2</sub>O/H<sub>3</sub>O<sup>+</sup> → aldehyde
</td>
</tr>
<tr>
<td>Carboxylic Acids
</td>
<td>Ozonation
<p>
- terminal alkene + O<sub>3</sub> + oxidizing agent (H<sub>2</sub>O<sub>2</sub>) → carboxylic acid
<p>
Benzene oxidation
<p>
- benzene with alkane substituent (not 3<sup>o</sup>) + KMnO<sub>4</sub> → alkane replaced w carboxylic acid
</td>
</tr>
<tr>
<td>Cyclopropanes
</td>
<td>Carbene addition
</td>
</tr>
<tr>
<td>Cyclohexenes
</td>
<td>Diels-Alder
<p>
- diene + alkene → cyclohexene (concerted reaction)
</td>
</tr>
<tr>
<td>Cyclohexadienes
</td>
<td>Birch reduction
<p>
- benzene + Na/NH<sub>3</sub> + EtOH → cyclohexadiene (donating groups on double bond)
</td>
</tr>
</table>