<table> <tr> <td>Compound </td> <td>Synthesis Methods </td> </tr> <tr> <td>Alkanes </td> <td>Alkene reduction <p> - alkene + H<sub>2</sub>/Pd → alkane (syn addition) </td> </tr> <tr> <td>Alkenes </td> <td>E1 <p> - tertiary or secondary halide/alcohol + polar protic solvent, gives more substituted double bond <p> E1CB <p> - bad leaving group and acidic proton, gives less substituted double bond <p> E2 <p> - strong base, usually gives more substituted bond unless steric issues or E1CB character <p> Alkyne redution <p> - alkyne + Lindlar catalyst → alkene (syn addition) </td> </tr> <tr> <td>C-C bonds </td> <td>SN2 with CN<sup>-</sup> or Grignard reagent <p> Epoxide opening with Grignard reagent </td> </tr> <tr> <td>Ethers </td> <td>Williamson ether synthesis <p> - alcohol and alkyl halide join </td> </tr> <tr> <td>Alcohols </td> <td>Direct hydration <p> - alkene + water → carbocation → alcohol (Markovnikov addition) <p> Hydroboration <p> - alkene + BH<sub>3</sub>/KOOH → alcohol (anti-Markovnikov syn addition) <p> Oxymercuration <p> - alkene + Hg(OAc)<sub>2</sub> → alcohol (Markovnikov addition w/o rearragement) <p> Epoxide opening <p> - epoxide + HNu/HNu<sub>2<sup>+</sup></sub> → opens to alcohol w nucleophile on more substituted carbon <p> - epoxide + HNu/Nu<sup>-</sup> → opens to alcohol w nucleophile on less substituted carbon </td> </tr> <tr> <td>Alkyl halides </td> <td>Hydrohalogenation <p> - alkene + HX → carbocation → alkyl halide (Markovnikov addition) <p> Radical substitution <p> R-H + X<sub>2</sub> + hv → R-Br + HBr </td> </tr> <tr> <td>Alkyl bromides </td> <td>Hydrohalogenation <p> Radical substitution with Br<sub>2</sub> <p> Allylic halides <p> - alkene + NBS → bromination leaving double bond intact <p> Hydrobromination <p> - alkene + HBr → alkyl bromide (Markovnikov addition) <p> Radical hydrobromination <p> - alkene + HBr + peroxides or AIBN → alkyl bromide (Anti-Markovnikov addition) </td> </tr> <tr> <td>Epoxides </td> <td>Using bromohydrins <p> alkene + Br<sub>2</sub> + H<sub>2</sub>O → bromohydrin + NaH → epoxide <p> Using peracids <p> alkene + peracid → epoxide (concerted reaction) </td> </tr> <tr> <td>Diols </td> <td>Alkene oxidation <p> - alkene + KMnO<sub>4</sub>→ vicinal diol (syn addition) <p> Epoxide opening <p> - water in acidic or basic conditions (anti addition) </td> </tr> <tr> <td>Ketones </td> <td>Ozonation <p> - non-terminal alkene + O<sub>3</sub> + reducing agent (Me<sub>2</sub>S) → ketone <p> Alkyne hydration <p> alkyne → BH<sub>3</sub>/KOOH or Hg(OAc)<sub>2 </sub>→ enol + H<sub>2</sub>O/H<sub>3</sub>O<sup>+</sup> → ketone </td> </tr> <tr> <td>Aldehydes </td> <td>Ozonation <p> - terminal alkene + O<sub>3</sub> + reducing agent (Me<sub>2</sub>S) → aldehyde <p> Alkyne hydration <p> Terminal alkyne → BH<sub>3</sub>/KOOH → enol + H<sub>2</sub>O/H<sub>3</sub>O<sup>+</sup> → aldehyde </td> </tr> <tr> <td>Carboxylic Acids </td> <td>Ozonation <p> - terminal alkene + O<sub>3</sub> + oxidizing agent (H<sub>2</sub>O<sub>2</sub>) → carboxylic acid <p> Benzene oxidation <p> - benzene with alkane substituent (not 3<sup>o</sup>) + KMnO<sub>4</sub> → alkane replaced w carboxylic acid </td> </tr> <tr> <td>Cyclopropanes </td> <td>Carbene addition </td> </tr> <tr> <td>Cyclohexenes </td> <td>Diels-Alder <p> - diene + alkene → cyclohexene (concerted reaction) </td> </tr> <tr> <td>Cyclohexadienes </td> <td>Birch reduction <p> - benzene + Na/NH<sub>3</sub> + EtOH → cyclohexadiene (donating groups on double bond) </td> </tr> </table>